

a DEKRA company

VEIKI-VNL ELECTRIC LARGE LABORATORIES LTD. H-1158-BUDAPEST, VASGOLYÓ UTCA 2-4. HUNGARY

VEIKI-VNL Ltd.

4 4

AKKREDITÁLÁSI OKIRAT

A NEMZETI AKKREDITÁLÓ HATÓSÁG

The National Accreditation Authority

ány és a 424/2015. (XII.23.) Ko

VIIIa

TIF

Net

GEMEN

1458 BA

tos Nagylabo Tanúsítási Iroda

In elisment, hogy a lovernment Decree No. 424/2015. (XII.23.) tes, that

AKKREDITÁLÁSI OKIRAT ACCREDITATION CERTIFICATE

A NEMZETI AKKREDITÁLÓ HATÓSÁG National Accreditation Authority

H-1-1251/201

VEIKI-VNL Electric Large Laboratories Ltd., a DEKRA company, is an independent, accredited testing laboratory and product certification body and a member of the Short-circuit Testing Liaison (STL) organization. Its testing activities started in the 1950s when the Hungarian government decided to found the Institute for Electrical Power Research (VEIKI). VEIKI-VNL Ltd. became a DEKRA company in 2017.

VEIKI-VNL Ltd. is accredited by the Hungarian Accreditation Authority (NAH) as a testing laboratory according to

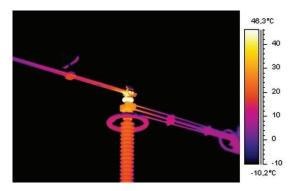
ISO/IEC 17025 and as a product certification body according to ISO/IEC 17065. The integrated quality and environmental management system conforms to the requirements of ISO 9001 and ISO 14001, and it is certified by the Hungarian Standards Institution. The testing facilities are unique in Hungary, and cover the whole range of power network equipment. VEIKI-VNL Ltd. consists of four laboratories – the High Voltage Laboratory, the High Power Laboratory, the High Current Laboratory, and the LOCA Laboratory (a laboratory for testing nuclear power plant equipment) - as well as the Certification Office. The company's main activities are laboratory testing, diagnostics, product certification and research & development.

HIGH-VOLTAGE TESTS

The testing activities of the High Voltage Laboratory cover dielectric tests, radio interference (RIV) and corona tests and partial discharge measurements on equipment, cables, cable accessories, insulators, insulator sets and fittings for overhead lines and substations. Impulse voltage tests can be carried out up to 1,800 kV peak in the indoor testing hall and up to 3,400 kV peak at the outdoor test site. The maximum available power frequency voltage is 700 kV RMS in the indoor testing hall and 1,400 kV RMS at the outdoor test site.

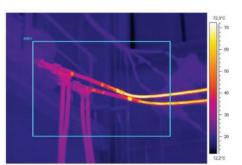
MAIN PARAMETERS:	
Power-frequency voltage (Continuous current: 1 A)	1400 kV _{rms}
Direct voltage (100 mA)	200 kV _{DC}
Lightning impulse voltage (0.5-5 / 10-100 µs)	3400 kV _{peak}
Switching impulse voltage (250 / 2500 µs)	2800 kV _{peak}
Steep front wave voltage	3000 kV _{peak} /µs
Superimposed single-phase voltages:	
 Power-frequency voltage + lightning impulse voltage 	1000 kV _{rms} + 3400 kV _{peak}
 Power-frequency voltage + switching impulse voltage 	1000 kV _{rms} + 2800 kV _{peak}
 Power-frequency voltage + power-frequency voltage 	700 kV _{rms} + 360 kV _{rms}
Three-phase synchronizing generator:	1000 V _{rms} , 1000 A
Three-phase generator with adjustable frequency	100 Hz, 1000 V _{rms} , 3×25 A
Single-phase transformer for RIV and partial discharge tests (500mA)	700 kV _{rms} , 3 pC, 10 dBµV
Faraday cage (5m x 5m x 4m) for partial discharge test	60 kV _{rms} , 1 pC

SHORT-CRICUIT TESTS


The testing activities of the High Power Laboratory cover short-circuit tests on various equipment, such as making and breaking tests, internal arc tests, power arc tests, short-time withstand current and peak withstand current tests supplied from the 50 Hz power network. The laboratory's synthetic apparatus provides the testing environment for high-voltage circuit breakers including short-line fault tests and terminal fault tests using a single-phase current injection synthetic test circuit with DC recovery voltage.

50 Hz max. 1000 MVA max. 650 MVA 330 kV 50 kA _{rms} / 140 kA _{peak} t _{dL} >=100 ns
max. 650 MVA 330 kV 50 kA _{rms} / 140 kA _{peak} t _{dL} >=100 ns
330 kV 50 kA _{rms} / 140 kA _{peak} t _{dL} >=100 ns
50 kA _{rms} / 140 kA _{peak} t _{dL} >=100 ns
50 kA _{rms} / 140 kA _{peak} t _{dL} >=100 ns
t _{dL} >=100 ns
max. 50 kA
max. 50 kA _{rms} on 62 m length
max. 31.5 kA _{rms} on 135 m length
max. 20 kA _{rms} on 250 m length
nax. 125 kA _{peak} on 62 m bundle length
max. 63 kA
max. 50 kA
max. 170 kA _{rms}
$U_{r-primary} \le 35 \text{ kV}; S_n \le 16 \text{ MVA}$
$35 \text{ kV} \le U_{r-primary} \le 123 \text{ kV} (145 \text{ kV})$
S _n ≤ 40 MVA
150 kA _{rms} /330 kA _{peak} at < 350V
110kA _{rms} /240 kA _{peak} at 430V-550V
55kA _{rms} /121 kA _{peak} at 690V-1100V
-

TEMPERATURE-RISE TESTS


Temperature-rise tests on equipment such as transformers, switchgears, prefabricated substations, cables, conductors and fittings for substations and overhead lines are performed in the High Current Laboratory up to 10 kA. This laboratory has individual supply for three-phase short-circuit tests with maximum power of 80 MVA, enabling short-circuit and temperature-rise systems to be combined for special tests. The analog and digital measuring systems can record currents and more than 100 temperature magnitudes.

MECHANICAL TENSILE TESTS

Mechanical tensile tests on conductors, fittings and insulators can be executed up to 300 kN. The laboratories have two tensile machines for stress-strain and breaking strength tests with lengths of 10 m (vertical) and 14 m (horizontal). The tensile machines have optional chambers for thermomechanical tests in the temperature range of between -40°C and +50°C and for electromechanical tests up to 100 kV. Tailormade mechanical tests can be set up in a special test arrangement for bending, for torsion and for mechanical impact tests or to achieve higher mechanical loads.

TESTS ON OVERHEAD LINES AND ACCESSORIES

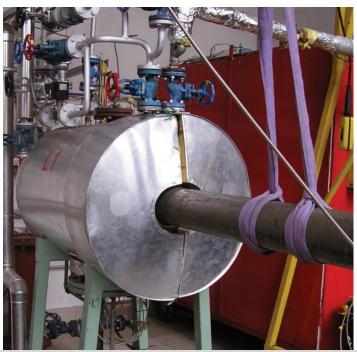
High Voltage Laboratory is able to perform dielectric, corona and radio interference (RIV), short-circuit, temperature-rise, heat-cycle, lightning and mechanical tests as well as stressstrain, breaking strength, individual wire tensile and creep tests on overhead power lines. Corona tests, RIV tests and numerous mechanical tests can also be performed on overhead line accessories such as spacer dampers and stockbridge dampers.

TESTS ON CABLES AND ACCESSORIES

The tests that can be conducted on cables and cable accessories include dielectric, temperaturerise, heat-cycle, electrical ageing in dry or wet environment, short-circuit on core, screen and flammability testing.

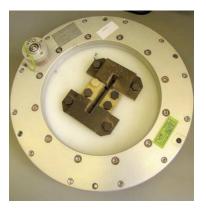
POLLUTION AND AGEING TESTS

Ageing, heat-cycle ageing, accelerated ageing and pollution tests can be carried out in the laboratories on cables, fittings for conductors or substations, insulators or materials and on special equipment. Hermetically closed test chambers facilitate various tests in humid, wet, salt-fog, clear-fog, high-temperature, lowtemperature, high-pressure or high-intensity-UV environments while the electrical properties of the test specimen are monitored.



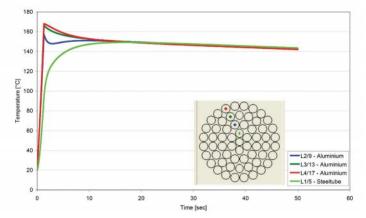
'LOCA' TESTS FOR NUCLEAR POWER PLANTS

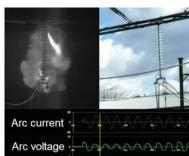
The purpose of the Loss Of Coolant Accident (LOCA) tests is to verify the operability of electrical equipment in case of malfunction for environments which require very high reliability, such as nuclear power plants. A malfunction can be modeled in the accident simulation chambers with variable thermo-hydraulic parameters (temperature, pressure, steam, humidity and condensation).



DEVELOPMENT OF TESTING EQUIPMENT AND METHODS

VEIKI-VNL Ltd. has a division supporting the advancement of measuring techniques and develops new testing or diagnostics equipment and software as follows:


- Method for power line diagnostics
- Software for the short-circuit temperature-rise calculation of conventional and OPGW conductors
- Database management and evaluation software for overhead line diagnostics
- Rogowski coil current measuring system up to 200 kA with accuracy of
 0.5%
- Micro-ohmmeter with max. test current of 200 ADC with accuracy of 0.2%
- Modular multichannel optical transient recorder with sampling rate of 500 kHz with accuracy of 0.1%



EXTRA SERVICES


- Binocular, image intensifier (photomultiplier) equipment and daylight UV camera for detection of visible corona
- Digital high-speed video camera up to 6,000 fps (2,000 fps in full resolution) for evaluating flashovers and mechanical tests or the behavior of the plasma channel during the power arc tests on insulator sets
- (Optical) pressure measurements during internal arc tests or breaking tests or for short-circuit tests on liquid-immersed equipment
- Infrared thermo vision camera for detecting hot spots on equipment

REFERENCES /PARTNERS

CONTACTS:

a DEKRA company

VEIKI-VNL Ltd. H-1158-Budapest, Vasgolyó utca 2-4. HUNGARY Phone: +36 1 417 31 57 Fax: +36 1 417 31 63 www.vnl.hu • vnl@vnl.hu